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Numerical Solution of a Bubble Cavitation Problem 
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A model of a cavitating bubble, consisting of a second-order ordinary differential equation, 
is studied. The bubble consists of an adiabatic gas surrounded by a viscous incompressible 
liquid with surface tension at the liquid-gas interface. Two numerical solution methods are 
given, one using a regularizing transformation and the other using suitably powerful 
general-purpose integrators. The numerical results show that the bubble tends to return to 
its maximum radius on successive oscillations. This indicates that viscosity is not sufficient 
to account for rapid damping of bubble oscillations. 

1. INTRODUCTION 

Wentzell [IO] has developed the following equation, Eq. (I), to describe the 
dynamics of a cavitating bubble. The bubble consists of an adiabatic gas surrounded 
by a viscous, incompressible liquid with surface tension at the liquid-gas interface. 
The bubble has been hit by a tension wave at s = 0. Further details can be obtained 
in Ref. [lo]. 

x $ + g (2,” + 4 ($J + 1 ~ cx-3v 1 Bx-I = (2) epris*, (1) 

where 

x ; R(s)/R, , s = (#y”. 

2a 
s 

2.9 x lO-5 P, II2 
*== 

&I t-1 P ’ D = R,P, ’ 
c=l+D; 

at s = 0, x = 1, dx/ds = 0; R(s) is the bubble radius for s > 0 with R(0) - R, _ 
The variable 7 is time, in seconds. For the model studied in Ref. [lo], p = lg/cms, 
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P, = lo6 dyn/cm2 (1 atm), u = 72.8 dyn/cm, y = 1.4, P, = 5 atm, p =I 1O-2 dyn 
sec/cm2. 

There is a critical value of d, , R*, , such that for & > R*, the bubble will cavitate, 
but for R, < R*, the bubble undergoes rather mild oscillations about its initial radius. 
Numerical experiments have shown that R*, w 1.71 x 10-5. 

To study the motion of the bubble for s > 0, Eq. (1) is converted to a system of 
first-order ordinary differential equations (ODE’s), 

4, -= 
ds Y2 3 (24 

4, Ps 
I( ) ze 

-sls* -= 
ds 

- 1 - ; y22 ; - 
I 

aY2 + D c 
y12 + - 3v+l' 

Yl 
(2b) 

where y,(O) = i, y,(O) = 0, P,/Pc = 5, s* = 0.029/R, , a = 4 x 10-5/R,, D = 1.456 x 
10-4/R,,c = 1 + D,andy = 1.4. 

Wentzell [lo] found that for R, = 10-3, y, can become small (-6 x 10-5) while 
simultaneously / y, / = / dyJds 1 becomes large (~10s) for s = 175. Although y, 
passes continuously from --IO* to 10s for y, w 6 x 1O-6, this occurs within lO-B 
s-units. Consequently, it would be natural to refer to such points as cusp-like points. 
In Ref. 10 it was found that successive bubble-radius maxima monotonically decreased. 
These results were obtained by numerically integrating Eq. (2) through cusp-like 
points. Wentzell [lo] had considerable difficulty in integrating through each cusp-like 
point, and consequently his numerical results may be suspect after the first cusp-like 
point, for the following reason. In Eq. (2) the terms DY;~, -8 ~,~y;l, -ay, Y;~, 
and CY;~~-’ are not sufficiently large for a long enough s-interval to account for the 
amount of damping that was observed. Near a cusp-like point these terms are large 
but this occurs within an interval of approximately lo-* s-units. 

As is known, Henrici [5], the accuracy obtained in numerically integrating Eq. (2) 
depends on (among other things) the magnitudes, and sometimes on the relative 
magnitudes, of the eigenvalues of the Jacobian matrix of the right-hand side of Eq. (2). 
At the cusp-like point near s = 175, y, = 6 x 1O-5 and I y2 1 m lOa so that the two 
eigenvalues are complex, with real and imaginary parts approximately +1013, and 
hence the system is not stiff. Near a cusp-like point very small integration steps are 
required to maintain integration accuracy. 

In this paper, we describe two main approaches to the numerical solution of our 
bubble cavitation problem. These are (a) integration of the original equations, Eq. (2), 
by suitably powerful integrators, and (b) modification of the original equations by 
regularizing transformations designed to smooth out the trajectory near cusp-like 
points, followed by integration of the regularized equations. In Section 2, two forms 
of regularizing transformations are discussed, while in Section 3 the numerical results 
are presented. Our experience suggests that efforts to find and implement suitable 
regularizations for such nonsmooth problems may not always be warranted, but that 
a better first approach would be to attempt a solution with one of the powerful 
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general-purpose integrators which have become available in recent years. The 
numerical results also show that viscosity is not sufficient to account for rapid damping 
of bubble oscillations, contrary to what is reported by Wentzell [lo]. 

2. THE REGULARIZING TRANSFORMATIONS 

A technique is required to smooth out the trajectory in the neighborhood of cusp- 
like points. One such procedure is the method of regularization, commonly used in 
planetary trajectory computations, when there is a close-encounter with the gravi- 
tational source (Baumgarte and Stiefel [2]). These close-encounters are cusp-like 
points. In the regularizing transformation, the old independent variable, s, in Eq. (2) 
is to change slowly near a cusp-like point. 

Let t be the new independent variable, such that 

ds 
yg = Yla, (3) 

where 01 > 0 is a parameter to be determined. The initial value of t is arbitrary and 
may be taken as zero. Observe that as a cusp-like point is approached s changes 
slowly compared to t, because yr is becoming small. Using Eq. (3), the equations for 
the bubble cavitation problem, Eq. (2), become 

4, 
yjj- = YZYl”, 

J’s --s/s dy, 
dt - p, e I( 1 

- 1 - ; y2z/ yl”-’ - (uy2 + D} yl”-” + CY;-~‘-? (4b) 

Two different sets of regularized equations are obtained from Eq. (4). In the first 
set, called Regularization 1, a specific value is assigned to a, while in the second set, 
Regularization 2, Eq. (4) is transformed again by way of a change in the dependent 
variable y2 . 

Reguhrizution 1. In Eq. (4b), y1 is to appear only to a nonnegative power. 
Consequently, set OL = max(3y + 1,2} = 3y + 1, as y = 1.4. The regularized 
equations are 

dy, f’s --s/se -= 
dt I( ) -2ye - 1 - ;Y21/ v: - lay2 + WY:'-' + c, W 

ds 
-= 3y+1 

dt ‘I 

with yr , y2, and s known at t = 0. 
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Regularization 2. This set of reguIarized equations is obtained from Eq. (4) by 
setting y3 = yZ yl*. Equation (4) becomes 

dy, -= 
dt Y3 P 

&a P -= 
dt I[( 1 

2 e-srs* 
PC 

- I] y1 - Dj yl”“-” 

+ ((II - g) y:y;l - ay3yfm2 + ~y~-~‘-‘, (6’4 

with y1 , y3, and s known at t = 0. 
In this form of the regularization, j y3 / will be very much smaller than / y2 / near 

cusp-like points. If 01 = (3~ + 1)/2 then only nonnegative powers of y1 will occur in 
Eq. (6b), except for the y32 y;l term. However, by setting 01 = 8 the term 
(a - 2) y32y;1 is removed from Eq. (6b). Equation (6) can also be derived from Eq. (l), 
using Eq. (3), and defining x = y1 and dxldt = y3. We used Regularization 2 in our 
numerical studies with both of the above values of ar. 

3. NUMERICAL RESULTS 

The following numerical experiments are grouped according to the integrators 
used. Various computational results are summarized in Tables I and II. 

3. I. Experiments with DIFSUB [4] 

The ODE integrator DlFSUB is due to Gear [4]. His program was modified to 
be compatible with the WATFIV Compiler (although used with the FORTRAN-H 
Compiler) and converted to double precision. The calculations were done in double 
precision on the IBM 360/75 Computer at the University of Waterloo. DIFSUB 
controls the magnitude of the single-step errors, measured relative to the quantities 
y1 and max(j z 1, 1) for y, and z, respectively. (Here, z can be y, , y, , or s.) An error 
bound of 1O-4 was selected. Also, the DIFSUB option for nonstiff systems was used. 

DIFSUB was first tried on the problem in its unregularized form (2), with R, = 10-3. 
With a minimum allowable step-size of lo- 12, the integration failed near the first 
cusp-like point, stopping with an error message that “corrector convergence could 
not be achieved.” However, when the minimum allowable step-size was reset to 
lo-ls, DIFSUB was able to integrate through the first cusp-like point. These results 
are given in Table I, along with those originally obtained by Wentzell [IO]. Location 
of each extremum was obtained by solving y, = 0, using Newton’s method, after 
the extremum had been bracketed by successive integration steps. 
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The computer results obtained with DIFSUB showed that the bubble bounces, in 
that nearly the same bubble-radius maxima are attained. This is different from the 
monotonic decay observed in Ref. 10. Examination of the differential equations (2) 
shows that as s + + co the forcing function (PJPJ e-+/% tends to zero. Consequently, 
the system approaches an unforced system in which P,/Pc = 0. Application of the 
test of Dulac [l] to the unforced system shows that there are no periodic solutions 
(limit cycles). The system eventually decays to its equilibrium state ( yr = 1, y, = 0), 
but s would be quite large before the decay would be noticable. 

As a further check on the bouncing effect observed using DIFSUB, the differential 
equations for a bubble of radius R, = lO-2 were integrated over the interval 
0 < s < 220. Within this interval there were 14 bubble-radius maxima and minima. 
The bubble-radius maxima had values in the range 8.239 < ( &,ax < 8.3456, 
while the minima were in the range 1.074 x 1O-2 < (Y&in < 1.149 x 10-2. 

It shodd be noted that the computational results of Ref. 10 were obtained with 
an integrator that did not use single-step error control. As one can see, the results 
given in column 1 of Table I show that the trajectory rapidly decays after the first 
minimum is passed. The rapid decay is attributed to numerical integration errors 
in the vicinity of the first cusp-like point. This demonstrates the danger in integrating 
ODE’s without some control on the single-step errors. 

Next, DIFSUB was used on the regularized equations: Regularization 1, Eq. (5), 
and Regularization 2, Eq. (6). Again, R, = 1O-3 was used. For Eq. (6), both 01 = $ 
and 01 = (3~ + 1)/2 were used, These results are given in Table I. 

It is of interest to compare the efficiencies of integrating the various equations. In 
Table IT, we give the number of integration steps (IS) and the number of derivative 
evaluations (DE) to attain each of the bubble extrema for the R, = 1O-3 bubble. 
Each of these quantities is measured from the beginning of the integration at s = 0. 
The results, using DIFSUB, show that Regularization 2 (Eq. (6) with CI = 8) is best 
while Regularization 1, Eq. (5), is less efficient than the original equations, 

Another regularization was also tried with DIFSUB. This is one in which arc- 
length is used as the independent variable. It has the advantages of being quite general, 
and of avoiding step-lengths below the roundoff level in the independent variable. 
However, the reduction in cost was less than 15 “/,, while the best of the other regulari- 
zations reduced the cost by a factor of about 4.7. 

3.2. Experiments with GEAR [6] and EPISODE [3, 7, 81 

As an additional experiment, the unregularized problem (2) was attempted with 
two other ODE integrators which have been developed more recently than Gear’s 
DIFSUB [4]. The first of these is a package called GEAR [6], which evolved from 
DIFSUB through a long series of modifications. The second integrator is a newer 
package called EPISODE [3, 7, 81. Both of these packages have various method 
options (depending on the presence or absence of stiffness, among other things). 
The one chosen here is the standard nonstiff option (MF = lo), as this 
probfem is not a stiff one. The primary difference between the two packages is 
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that EPISODE is based on variable-step multistep formulas, while GEAR (like 
DIFSUB) is based on fixed-step formulas, with step-size changes accomplished by 
use of interpolation. Both of these packages vary the order as well as the step-size 
in a dynamic manner, and include complicated strategies and safeguards for the 
selection of these on the basis of accuracy and efficiency considerations. 

The calculations described below were done on a C.D.C. 7600 computer at the 
Lawrence Livermore Laboratory. Single precision was used, as this gives nearly the 
same accuracy as double precision on the IBM 360/75. The single-step errors were 
measured as those for DIFSUB: the same error bound of 1O-4 was used. 

Both GEAR and EPISODE were able to integrate the problem (2), with R, = 10-3, 
to the second minimum with no difficulty. The computational results are given in 
Table I, while the corresponding computational statistics are given in Table II. 
EPISODE did a slightly more efficient job than GEAR, as would be expected on the 
basis of the methods. Some caution was necessary in assuring that the integrators 
were free to use a sufficiently wide range of step-sizes, ds. Steps of lo-l6 to IO-l5 
were necessary near the cusps, but the step-lengths near the maxima were about 10. 
(The changes in step-length from step to step were not great, however.) Note that 
this temporarily results in the odd fact that s + ds = s in the computer, but this does 
not hamper the integrators because yi + dy, # yi and the integration of the yi 
continues normally. 

The locations and values of the maxima and minima obtained with GEAR and 
EPISODE agree well with those obtained using DIFSUB, in Table I, considering the 
error controls imposed and the fact that two different computers were used. Each 
maximum was obtained by Newton’s method, as in the DIFSUB runs. (The minima 
were located accurately enough by inspection of the step data.) 

These calculations were repeated with other values of R, as well, and in all cases 
both GEAR and EPISODE were successful on the problem. As a particular case, 
we mention that of R, = 1.8 x 10-5. The first cusp-like point is near s = 9.576 x 103, 
with y, = 1.33 x IO-* and I y, I = 1015. Step-sizes near 1O-27 were required to pass 
through the cusp. 

4. CONCLUDING REMARKS 

The computational results obtained here indicate that viscosity is not sufficient 
to account for rapid damping of bubble oscillations. The major effect on rapid 
damping of bubble oscillations is probably the compressibility of the surrounding 
fluid, as reported by Keller and Kolodner [9]. It is believed that the effect of viscosity 
will be important in the initiation of cavitation. Further work on this aspect is under 
way. 

As to the numerical methods used to obtain these results, it would seem that, for 
this problem at least, the use of an appropriately powerful ODE integrator is a more 
efficient overall approach than the design of a regularization procedure. Both are 
successful, but the former requires little more than programming the right-hand 
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sides of the ODE system, while the latter is bound to require a considerably greater 
human effort. The regularization approach has the potential advantage of requiring 
less computer time, as Regularization 2 showed. However, for a problem of this size 
it appears that the savings would be at most a few seconds of computer time. Of 
course, if one were solving many equations repetitively, such as in solving two-point 
boundary-value problems by shooting methods, then the design and use of an 
appropriate regularization would be worthwhile. 

As a result of this experience, we make the following general recommendation: when 
faced with the task of solving (numerically) a problem of a given type, the computation- 
al physicist should first attempt a solution with whatever general-purpose solvers are 
available for the given problem type, and only if that fails pursue more specialized 
approaches designed around the troublesome features in the problem. This order of 
procedure has the potential benefit of saving a great deal of human effort. Of course, 
if the general approach succeeds only at the expense of large computational costs, 
then a special approach may be called for, and one must make trade off considerations 
between human time and computer time. 
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